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The added mass of a flexible plate oscillating in a fluid
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Abstract

This work presents a review and a numerical study of the fundamental properties of the added mass of a plane flexible

plate oscillating in a fluid. A low aspect ratio plate is immersed in a stationary fluid. The plate is clamped at one edge

and free at the other edges. The plate vibrates in a single natural mode. Thin airfoil theory is applied to calculate the

pressure jump across the plate. The magnitude of the added mass is calculated for a spanwise half-sine fundamental

mode and the first 10 natural chordwise modes for plates with low aspect ratio. It is found that an increase of the order

of the mode of vibration decreases the added mass. A decrease of the aspect ratio ðAÞ leads to a decrease of the added

mass, and the attenuation of the dependence on the order of the chordwise natural mode. The numerical results show

that the noticeable dependence of the added mass on the order of the chordwise natural mode diminishes as A-0:01:
For A ¼ 1:0; the results obtained by three-dimensional theory resemble the results obtained by two-dimensional version
of the basic solutions ðA ¼ NÞ: For the verification of the present method, calculations were carried out also for the

simply supported plate. It is shown that the obtained data are in good agreement with known results.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The concept of added mass has a wide application in the dynamic analysis of a flexible plate that is subjected to fluid

flow, in particular, in flutter analysis (Datta and Gottenberg, 1975). The problem of the flexible plate flutter has a

solution when the fluid loading caused by motion of the plate is known. The added mass is a characteristic of the fluid

loading (Pretlove, 1965; Minami, 1998). The understanding of the properties of the added mass will allow the fluid

loading to be obtained in the most suitable form. Some determinations of the fluid loading and the added mass for a

supported plate are known from the slender wing theory (Jones, 1946), the travelling wave solution (Miles, 1956;

Dugundji et al., 1963), two-dimensional linear aerodynamic theory (Kornecki et al., 1976), or three-dimensional linear

aerodynamic theory (Lucey and Carpenter, 1993). The existing knowledge regarding the added mass is limited to the

specific cases mentioned above, and is not applicable to a wide range of low aspect ratio cantilever plates.

The fluid loading on a cantilever plate in an axial flow may be presented as the sum of a noncirculatory part, and a

circulatory part (Kornecki et al., 1976). The noncirculatory part of the fluid loading has the effects of modifying the

added mass, the fluid dynamic damping and the added stiffness on the plate. The added mass is present in the

noncirculatory part only, but the fluid damping appears in both the noncirculatory and circulatory parts (Huang, 1995).

Minami (1998) has considered a membrane that has its ends fixed in an incompressible fluid within the framework of

the thin airfoil theory. He has shown that the added mass does not depend on the frequency and the amplitude of the

oscillations; the added mass uniquely depends on rl; and for the first mode of oscillation it is expressed as M ¼ 0:68rl:
Here r and l are the fluid density and the membrane length, respectively.
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This review suggests that attention up to now has been restricted to few works and has mainly focused on the added

mass of a simply supported plate oscillating in still fluid.

2. Definition of the added mass

2.1. Model of oscillating plate

In a static state, a plate having length l and width H ; is fixed at the leading edge and free at the other edges. The plate
is a very thin flexible surface having a low aspect ratio. The ðx; y; zÞ coordinate system, having the origin at the leading

edge of the plate, is shown in Fig. 1. The (x; y)-axes are oriented in the direction of the length and the width,

respectively, of the plate.

In the dynamic state, the plate immersed in the fluid is assumed to be undergoing a natural oscillation continuously in

the half-sine standing wave fundamental mode in the y2z plane and in the one standing wave natural mode in the x2z

plane. The expression for the displacement h at any point x; y and time t is (Ellen, 1973)

hð %x; %y; tÞ ¼ aðtÞFnð %xÞsin p %y;

0p %xp1; 0p %yp1; n ¼ 1; 2; 3;y; ð1Þ

where aðtÞ is a function of time, Fnð %xÞ is the nth natural mode of the plate oscillation, %y ¼ y=H ; %x ¼ x=l are spanwise

and streamwise nondimensional coordinates along the plate, respectively.

Nomenclature

A aspect ratio, H=l

aðtÞ function of time

E kinetic energy of the fluid

FI ;FD;FS

aerodynamic inertia, damping and stiffness

H plate width

h surface displacement in normal direction

h1 chordwise deflection’s coordinate

h2 spanwise deflection’s coordinate

k wave number, 2pXl
l plate length

M added mass of a surface plate per unit area

n chordwise mode number

Dp fluid loading

s curvilinear coordinate along the deforming plate

t time

U freestream fluid velocity

VN fluid particle velocity in the direction of the local normal N

x; y; z Cartesian coordinates in the deformed state of plate

%x; %y dimensionless coordinates, x=l; y=H

bn nth eigenvalue

l wavelength

m nondimensional value of the added mass, MpXrl

r fluid density

s surface of fluid region

Fnð %xÞ nth natural mode of the plate oscillation in x2z plane

2-D two-dimensional

3-D three-dimensional
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2.2. Determination of the added mass

In the case of an incompressible inviscid stationary fluid the rate of change in time of kinetic energy of any portion of

the fluid is equal to the work done by the pressures on its surface (Lamb, 1932):

dE

dt
¼ �

Z Z
s

VNDp ds; ð2Þ

where E is the kinetic energy, s is the surface bounding the fluid region and VN denotes the velocity of the fluid particle

in the direction of the normal N: The last integral thus expresses the rate at which the pressure Dp; exerted from outside

an element ds of the boundary, is doing work. Assuming the plate to be the fluid–solid interface (White, 1991), Eq. (2)

can be expressed as

dE

dt
¼ �

Z H

0

Z l

0

@h

@t
Dp ds dy; ð3Þ

where ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@h=@xÞ2

q
dx and @h=@t is the velocity of the plate in the normal direction. Note that the use of @h=@t

for normal velocity implies that the interface is more or less parallel to the x2y plane for sufficiently small oscillations.

On the other hand, the rate of change of kinetic energy in time of the oscillating plate having a mass per unit area

equivalent to the added mass, M; can be written as (Minami, 1998)

dE

dt
¼ M

Z H

0

Z l

0

@h

@t

@2h

@t2
ds dy: ð4Þ

Equating the right-hand sides of Eqs. (3) and (4) one obtains an expression for an added mass per unit area in the form

M ¼ �

RH

0

R l

0
Dpð@h=@tÞ ds dyRH

0

R l

0
ð@h=@tÞ ð@2h=@t2Þ ds dy

: ð5Þ

Eq. (5) displays the essential dependence of the added mass of the oscillating plate upon the fluid loading, Dp; as will be
seen in the analysis below.

3. Review of fluid loading formulations

Lord Rayleigh (1879) has shown that for traveling wave solutions, the fluid loading on a unit area of an infinite

horizontal surface is

Dpð %x; tÞ ¼
2r
k

@

@t
þ

U

l

@

@ %x

� �2

hð %x; tÞ; ð6Þ

where the fluid has a constant velocity U parallel to the x2y plane (Fig. 2); t is the time; k ¼ 2p=l is the wave number; l
is the wavelength; hðx; tÞ and l are the surface displacement and length, respectively, of the plate as defined above. In

Eq. (6) the coefficient 2r=k plays the role of an added mass per unit area, M:
For a finite length plate the fluid loading will be assumed to be that for an infinitely long wavy plate of a sinusoidal

shape given by (Dugundji et al., 1963)

hð %x; tÞ ¼
XN
n¼1

qnðtÞ sinðnp %xÞ; n ¼ 1; 2; 3;y; ð7Þ

 h(x,y,t)

l 
H 

Z 

Y 
X 

U 

Fig. 1. Model of the cantilever plate.
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where n is the mode number, and qnðtÞ is a function of time. This is a reasonable assumption except in the immediate

vicinity of the leading and trailing edges, particularly for the high modes (large n). Using expression (7), the coefficient

of the added mass, M; in Eq. (6) reduces to

M ¼
2rl

np
: ð8Þ

For a thin narrow plate Wu (1971) has shown that in limits of the slender-wing theory (Jones, 1946) the fluid loading is

Dpð %x; tÞ ¼
rl

p
A

p
2

� 	2 @

@t
þ

U

l

@

@ %x

� �2

hð %x; tÞ; ð9Þ

where A ¼ H=l is the aspect ratio of the plate. The coefficient of added mass here is

M ¼
rl

p
A

p
2

� 	2
: ð10Þ

This definition is usually referred to as the ‘‘slender-wing approximation’’ and is attributed to Jones (1946). The

resulting coefficient of the added mass is identical to that of the circumscribed circular cylinder. However, Sewall et al.

(1983) suggested that the added mass determined using the above method provides an overestimate.

Ellen (1973) found an asymptotic form for the pressure for low aspect ratio plates. The fluid loading (averaged across

the plate) was found to be

Dpð %x; tÞ ¼ �
2rl

p
A log A

@

@t
þ

U

l

@

@ %x

� �2

�ð %x; tÞ
Z 1

0

h2ð %yÞ d %y; ð11Þ

where the total surface deflection is considered as a product of two independent deflections in the streamwise and the

spanwise directions: hð %x; %y; tÞ ¼ h1ð %x; tÞh2ð %yÞ:With the assumption that the spanwise surface deflection may be written as

h2ð %yÞ ¼ sin p %y; 0p %yp1; ð12Þ

Eq. (11) is reduced to

Dpð %x; tÞ ¼ �
rl

p
4

p
A log A

� �
@

@t
þ

U

l

@

@ %x

� �2

h1ð %x; tÞ: ð13Þ

The added mass is thus

M ¼
rl

p
4

p
Ajlog Aj

� �
: ð14Þ

Considering a flexible plate of infinite width and finite length l; embedded in an infinite rigid plane, with a uniform

incompressible two-dimensional flow, Kornecki et al. (1976) have shown that the flow loading per unit area of the plate

may be expressed as

Dpð %x; tÞ ¼ �
2rl

p

Z 1

0

@

@t
þ

U

l

@

@x

� �2
(

� hðx; tÞ lnj %x � xj dx� Rð %xÞ

)
; ð15Þ

Fig. 2. Model of the plate simply supported at both ends.
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where

Rð %xÞ ¼
U

l

@h

@t

����
%x¼1

þ
U

l

@h

@ %x

����
%x¼1

� �
lnð1� %xÞ

�
U

l

@h

@t

����
%x¼0

þ
U

l

@h

@ %x

����
%x¼0

� �
lnð %xÞ:

Eq. (15) resembles Eqs. (6)–(13). The terms

@2h

@t2
; 2

U

l

@2h

@ %x@t
;

U

l

� �2@2h

@ %x2

express the translatory, Coriolis and centrifugal accelerations of the fluid particles, respectively, and the function

lnj %x � xj represents the effect of spatial memory. Considering the explicit terms, one can deduce that the fluid loading

has the effects of modifying the added mass, the fluid dynamic damping and the added stiffness on the plate (Huang,

1995). It is evident from Eq. (15) that at points %x ¼ 0 and 1 there exist logarithmic singularities. These singularities are

versions of the well-known leading and trailing edge singularities of thin airfoil theory (Garrad and Carpenter, 1982b).

Kornecki et al. (1976) noted the existence of these singularities but regarded them as unimportant in practice.

Subsequently, Garrad and Carpenter (1982a) showed that these singularities are very weak, and that Kornecki et al.

(1976) were indeed fully justified in ignoring them.

The generalized fluid loading (Eq. (15)) has been evaluated numerically (Garrad and Carpenter, 1982b) for the plate

simply supported at both ends (Fig. 2) by using six sine modes in the Galerkin expansion. The results obtained

demonstrate the variation of the aerodynamic inertia with the mode number. By neglecting viscous effects and using a

three-dimensional thin wing theory, Lucey and Carpenter (1993) have obtained the generalized fluid loading on the

flexible plate as

Dpð %x; %y; tÞ ¼
rl

p
FI

@2h

@t2

� �
þ UFD

@h

@t

� �
þ U2FSðhÞ


 �
; ð16Þ

where

FI

@2h

@t2

� �
¼ A

Z 1

0

Z 1

0

1

R

@2h

@t2

����
ð %x; %yÞ¼ðx;ZÞ

dx dZ; ð17Þ

FD

@h

@t

� �
¼

A

l

Z 1

0

Z 1

0

1

R

@2h

@x@t

����
ð %x; %yÞ¼ðx;ZÞ

"
þ

@

@x
1

R

� �
@h

@t

����
ð %x; %yÞ¼ðx;ZÞ

#
dx dZ; ð18Þ

FSðhÞ ¼
A

l2

Z 1

0

Z 1

0

@

@x
1

R

� �
@h

@x

����
ð %x; %yÞ¼ðx;ZÞ

dx dZ ð19Þ

and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð %x � xÞ2 þ A2ð %y � ZÞ2

q
:

Three contributions to the fluid loading (Eq. (16)) are identified as aerodynamic inertia FI ; damping FD and stiffness FS

(Kornecki et al., 1976). These integrals have been evaluated numerically by using three sine modes (Lucey and

Carpenter, 1993) for a plate simply supported at all ends and with aspect ratio A ¼ 1:0 and 5:0: The results obtained by
Lucey and Carpenter (1993) illustrate how the aerodynamic inertia varies with the mode number and the aspect ratio.

4. Results and discussion of the numerical calculation

To obtain values for the added mass, it is necessary to define the deflection form of the cantilever plate (Eq. (1)). If we

assume a half-sine spanwise deflection, the following deflection form can be assumed:

hð %x; %y; tÞ ¼ aðtÞsin p %y cosh bn %x � cos bn %x
�

�ðsinh bn %x � sin bn %xÞ
cosh bn þ cos bn

sinh bn þ sin bn

�
; ð20Þ
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where the eigenvalues, bn; are (Paidoussis, 1998):

bn ¼ 1:8751; 4:69409; 7:85476; etc:; n ¼ 1; 2; 3y :

For small oscillations of the plate, the length of the element ds can be written as dsEdx; and Eq. (5) takes the following
form:

M ¼ �

RH

0

R l

0 Dpð@h=@tÞ dx dyRH

0

R l

0ð@h=@tÞð@2h=@t2Þ dx dy
: ð21Þ

The values of the added mass per unit area are calculated from Eqs. (20) and (21) for cantilever plates with various

aspect ratios. The expression for the fluid loading Dp; in Eq. (21), is chosen according to a three-dimensional

aerodynamic theory (Eq. (16)) for a stationary fluid (i.e., U ¼ 0; see Appendix A, Eq. (A.1)). Direct numerical

integration is used in the solution of Eq. (21) for the first 10 chordwise natural modes ðn ¼ 1; 2;y; 10Þ in expression

(20).

It should be noted that all the expressions for the fluid loading presented in Appendix A have the same multiplier

rl=p; and so a nondimensional value for the added mass, m ¼ M=ðrl=pÞ; will be used.
Values for the added mass (stationary fluid, U ¼ 0) were also calculated according to the two-dimensional

aerodynamic theory, the slender-wing approximation for aspect ratio A ¼ 0:1 and the travelling wave solution

(approximation of Dugundji et al. (1963)) for an infinitely wide plate (see Eqs. (A.2)–(A.4) in Appendix A, respectively).

The dependence of the added mass, m; on the number of the natural mode, n; is shown in Fig. 3. The largest variation
of the added mass with aspect ratio occurs in the lower modes. The dependence of the added mass on the order of the

chordwise natural mode diminishes as the number n increases. As a result, the value of the added mass of a cantilever

plate vibrating in a high natural mode, calculated by three-dimensional equation, approaches asymptotically the value

of the added mass calculated by the travelling wave solution for the same natural mode, n (Eq. (8)). It is clear that for

low aspect ratio and for the low modes an appreciable discrepancy exists between the values calculated by the three-

dimensional aerodynamic theory and those calculated by the slender-wing theory (Eq. (10)).

An evaluation of the present method for calculating the added mass has been performed for a plate simply supported

on all sides. The following expression for the displacement of the vibrating plate is used in place of Eq. (20):

hð %x; %y; tÞ ¼ aðtÞsin np %x sinp %y;

0p %xp1; 0p %yp1; n ¼ 1; 2; 3;y : ð22Þ

The expressions for the fluid loading, Dp; for the simply supported plate is the same as those used for the cantilever

plate. The calculated values of the nondimensional added mass are presented in Fig. 4.

For the verification of the present results, calculations were carried out for the added mass values, for a three-

dimensional problem, allowing only three spanwise/chordwise natural modes following Lucey and Carpenter (1993) for

aspect ratio A ¼ 1:0; and for a two-dimensional problem allowing six chordwise natural modes following Garrad and

Carpenter (1982b). The comparisons are presented in Fig. 4. Also presented is one value for a two-dimensional problem

with only one half-sine chordwise natural mode (Minami, 1998).

1 2 3 4 5 6 7 8 9 10

Number of natural modes, n 

0.0

0.5

1.0

1.5

2.0

2.5

µ

(1) 

(2) 

(3) 

(4) 

(5) 

Fig. 3. The dependence of the added mass, m; on both the aspect ratio, A; and the number of the natural mode, n; of the cantilever plate
in still fluid. 2-D theory (dotted line); 3-D theory (continuous lines): (1) A ¼ 1:0; (2) A ¼ 0:5; (3) A ¼ 0:1; (4) A ¼ 0:05; (5) A ¼ 0:01:
For comparison: (’) slender-wing approximation, A ¼ 0:1 (Jones, 1946); (&) travelling wave solution (Rayleigh, 1879).
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The comparison between the present results and those of Lucey and Carpenter (1993) shows a good agreement. It is

interesting to see from the analysis of Figs. 3 and 4 that the values of the added mass for the simply supported plate are

higher than those for the cantilever plate for similar values of modal index n:
Fig. 5 presents the dependencies of the added mass on the aspect ratio and the number of the natural mode of the

cantilever plate. The results show that, assuming a single natural chordwise mode oscillation for a three-dimensional

problem, there is for the lowest four modes a strong dependence of the added mass on the aspect ratio.

The results obtained by the present solution of the three-dimensional problem can also be compared with those of the

slender-wing theory (Jones, 1946, Eq. (A.3)) and Ellen’s approximation (Ellen, 1973, Eq. (A.5)) in Fig. 5. The

comparison shows that the applicability of the slender-wing approximation depends upon both the mode number and

the aspect ratio. In particular, the added mass defined by the slender-wing approximation is overestimated for the first

natural mode oscillation ðn ¼ 1Þ and for aspect ratios larger thanE0.7; while for aspect ratios less thanE0.7 the results

are overestimated for higher mode numbers and underestimated for the first natural mode oscillation. Ellen’s

approximation compares well with our results for high natural mode numbers. Furthermore, we see that the slender-

wing approximation does not become more accurate at very low aspect ratios ðAE0:1Þ; and it underestimates the values
of the added mass, especially for plates vibrating in the fundamental mode.

5. Conclusions

A three-dimensional analysis for calculating the added mass of a cantilever plate vibrating in a single mode is

presented. The approach assumes a spanwise half-sine fundamental mode and a single natural mode in the chordwise

1 2 3 4 5 6 7 8 9 10

Number of natural modes, n 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

µ

(1) 

(2) 

(3) 

Fig. 4. Dependence of the added mass, m; on both the aspect ratio, A; and the number of the natural mode, n; of the simply supported
plate in still fluid. 2-D theory (dotted line); 3-D theory (continuous lines): (1) A ¼ 1:0; (2) A ¼ 0:1; (3) A ¼ 0:01: For comparison: (’),

slender-wing approximation, A ¼ 0:1 (Jones, 1946); (&) travelling wave solution (Rayleigh, 1879); (+) 2-D theory (Garrad and

Carpenter, 1982b); (J) 3-D theory, A ¼ 1:0; (Lucey and Carpenter, 1993); (K) thin airfoil theory (Minami, 1998).

0.0  0.2 0.4  0.6  0.8 1.0 

Aspect ratio, A 
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2.50

µ

(1)

(2)

(3)

(4)

(5)
(6)

(7)

Fig. 5. The variation of the added mass, m; with the aspect ratio, A; of the cantilevered plate in still fluid for various single natural

modes, n; according to the present 3-D analysis: (1) n ¼ 1; (2) n ¼ 2; (3) n ¼ 3; (4) n ¼ 4; (5) n ¼ 6; (6) n ¼ 8; (7) n ¼ 10: For
comparison: (’) slender-wing approximation (Jones, 1946); (- - -) low aspect ratio approximation (Ellen, 1973).
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direction. The thin airfoil theory for an incompressible fluid is applied. The main findings are: (a) the new approach is in

good agreement with earlier results for a simply supported vibrating plate, which was chosen as the verification test

case, (b) the nondimensional added mass is a function of the plate’s aspect ratio and the order of the natural mode of

vibration, (c) increase of the order of the chordwise natural mode of vibration decreases the value of the added mass, (d)

decrease of the aspect ratio leads to a decrease of the added mass and attenuates the dependence of the added mass on

the order of the chordwise natural mode. This dependence diminishes as the aspect ratio approaches 0.01. When the

aspect ratio equals unity, the results obtained by a three-dimensional theory are close to those calculated by a two-

dimensional approach (A ¼ N), (e) the commonly used slender-wing approximation for calculating the added mass

tends to overestimate the results for aspect ratios higher than E0.7, and underestimates these values for lower aspect

ratio plates vibrating in the fundamental mode.
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Appendix A

The expressions for fluid loading (stationary fluid, U ¼ 0) may be summarized as follows.

Lucey and Carpenter (1993):

Dp ¼
rl

p
A

Z 1

0

Z 1

0

@2h

@t2

����
ð %x; %yÞ¼ðx;ZÞ

�
dx dZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð %x � xÞ2 þ A2ð %y � ZÞ2
q ; ðA:1Þ

Kornecki et al. (1976), and Garrad and Carpenter (1982b):

Dp ¼ �
2rl

p

Z 1

0

@2h

@t2
lnj %x � xj dx; ðA:2Þ

Jones (1946) and Wu (1971):

Dp ¼
rl

p
A

p
2

� 	2@2h
@t2

; ðA:3Þ

Rayleigh (1879), Miles (1956), and Dugundji et al. (1963):

Dp ¼
rl

p
2

n

@2h

@t2
n ¼ 1; 2; 3;y; ðA:4Þ

Ellen (1973):

Dp ¼ �
rl

p
4A log A

p

� �
@2h

@t2
: ðA:5Þ
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